File:VFPt superconductor cylinder E-field potential+contour.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(SVG file, nominally 600 × 600 pixels, file size: 105 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary[edit]

Description
English: Deformation of a previously homogeneous electric field around a perfectly polarizeable metallic infinite cylinder with susceptibility 1 (e.g. a superconductor). Inside the cylinder the E-field vanishes, but the D-field is finite and uniform, directed like the external field. The electric field lines are accurately computed. The electric potential is drawn as a background color field and uniformely spaced equipotential lines are shown.
Date
Source Own work
Author Geek3
Other versions VFPt superconductor cylinder E-field.svg
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
Source code
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.2
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
doc = FieldplotDocument('VFPt_superconductor_cylinder_E-field_potential+contour',
    width=600, height=600, commons=True)
unit = 100.
E0 = [0.0, -1.0]
sphere = {'p':sc.array([0., 0.]), 'r':1.2}

field_outside = Field([ ['homogeneous', {'Fx':E0[0], 'Fy':E0[1]}],
    ['dipole2d', {'x':sphere['p'][0], 'y':sphere['p'][1],
     'px':2*pi*sphere['r']**2 * E0[0],
     'py':2*pi*sphere['r']**2 * E0[1]}] ])

# E-field inside is actually 0. Set to finite value, so that lines continue,
# i.e. assume susceptibility chi slightly below 1.
Efield_inside = Field([ ['homogeneous', {'Fx':1e-8*E0[0], 'Fy':1e-8*E0[1]}] ])

def sphere_Efield(xy):
    if vabs(xy - sphere['p']) < sphere['r']:
        return Efield_inside.F(xy)
    else:
        return field_outside.F(xy)

def sphere_potential(xy):
    if vabs(xy - sphere['p']) < sphere['r']:
        return Efield_inside.V(xy)
    else:
        return field_outside.V(xy)

field = Field([ ['custom', {'F':sphere_Efield, 'V':sphere_potential}] ])

U0 = field.V([3, 3])
doc.draw_scalar_field(func=field.V, cmap=doc.cmap_AqYlFs, vmin=-U0, vmax=U0)
doc.draw_contours(func=field.V, levels=sc.linspace(-3, 3, 11),
    linewidth=1, linecolor='#444444')

# draw the superconducting cylinder
cylinder = doc.draw_object('g', {'id':'metal_cylinder'})

def triangle_path(phi1, phi2, r):
    x1, y1 = r * cos(radians(phi1)), r * sin(radians(phi1))
    x2, y2 = r * cos(radians(phi2)), r * sin(radians(phi2))
    d = 'M {:.4f},{:.4f}'.format(x1, y1)
    d += ' A {:.4f},{:.4f} 0 0 1 {:.4f},{:.4f}'.format(r, r, x2, y2)
    d += ' L {:.4f},{:.4f}'.format(-x2, -y2)
    d += ' A {:.4f},{:.4f} 0 0 0 {:.4f},{:.4f}'.format(r, r, -x1, -y1)
    d += ' L {:.4f},{:.4f} Z'.format(x1, y1)
    return d

def grey(bright):
    return '#' + 3 * ('%02x' % int(256. * bright - 0.5))

doc.draw_object('circle',
    {'cx':sphere['p'][0], 'cy':sphere['p'][1], 'r':'{:.4f}'.format(sphere['r']),
    'style':'fill:' + grey(0.75) + '; stroke:none'}, group=cylinder)

for phi0 in [0]:
    ncolors = 25
    for a in sc.linspace(.5 / ncolors, 1 - .5 / ncolors, ncolors):
        bright = 0.75 + 0.15 * a
        phi1 = phi0 - 60 * (acos(2. * a - 1) / pi)**1.5
        phi2 = phi0 + 60 * (acos(2. * a - 1) / pi)**1.5
        d = triangle_path(phi1, phi2, sphere['r'])
        doc.draw_object('path', {'d':d,
            'style':'fill:' + grey(bright) + '; stroke:none'}, group=cylinder)

doc.draw_object('circle',
    {'cx':sphere['p'][0], 'cy':sphere['p'][1], 'r':'{:.4f}'.format(sphere['r']),
    'style':'fill:none; stroke:black; stroke-width:0.02'}, group=cylinder)
cylinder_charges = doc.draw_object('g', {'style':'stroke-width:0.02; stroke-linecap:square'}, group=cylinder)

nlines = 24
for iline in range(nlines):
    a = -3.6 + 7.2 * (0.5 + iline) / nlines
    line = FieldLine(field, [a, 200], maxr=210, directions='forward', pass_dipoles=1)
    doc.draw_line(line, linewidth=2.4, arrows_style={'at_potentials':[-2.1, 2.1]})

    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./unit, 4./unit)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./unit, 4./unit)
    
    # check if fieldline crosses sphere surface
    tlist = sc.linspace(0., 1., 1001)
    for i in range(1, len(tlist)):
        in0 = vabs(line.get_position(tlist[i-1]) - sphere['p']) <= sphere['r']
        in1 = vabs(line.get_position(tlist[i]) - sphere['p']) <= sphere['r']
        if in0 != in1:
            # find the point where the field line cuts the surface
            t = optimize.brentq(lambda t: vabs(line.get_position(t)
                - sphere['p']) - sphere['r'], tlist[i-1], tlist[i])
            pr = line.get_position(t) - sphere['p']
            cpos = 0.92 * sphere['r'] * pr / vabs(pr)
            if in1:
                path_d = path_minus
            else:
                path_d = path_plus
            doc.draw_object('path', {'stroke':'black', 'd':path_d,
                'transform':'translate({:.5f},{:.5f})'.format(
                    round(unit*cpos[0])/unit, round(unit*cpos[1])/unit)},
                    group=cylinder_charges)

doc.write()

Licensing[edit]

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:31, 12 November 2020Thumbnail for version as of 17:31, 12 November 2020600 × 600 (105 KB)Geek3 (talk | contribs)Uploaded own work with UploadWizard

The following page uses this file:

Metadata