File:Sphalerite replacing dolostone (Bonneterre Dolomite, Upper Cambrian; Magmont Mine, New Lead Belt, Bixby, Missouri, USA) 1 (41397242171).jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(2,544 × 2,601 pixels, file size: 5.17 MB, MIME type: image/jpeg)

Captions

Captions

Add a one-line explanation of what this file represents

Summary[edit]

Description

Zinc ore from Missouri, USA. (public display, Geology Department, Wittenberg University, Springfield, Ohio, USA)

A mineral is a naturally-occurring, solid, inorganic, crystalline substance having a fairly definite chemical composition and having fairly definite physical properties. At its simplest, a mineral is a naturally-occurring solid chemical. Currently, there are about 5400 named and described minerals - about 200 of them are common and about 20 of them are very common. Mineral classification is based on anion chemistry. Major categories of minerals are: elements, sulfides, oxides, halides, carbonates, sulfates, phosphates, and silicates.

The sulfide minerals contain one or more sulfide anions (S-2). The sulfides are usually considered together with the arsenide minerals, the sulfarsenide minerals, and the telluride minerals. Many sulfides are economically significant, as they occur commonly in ores. The metals that combine with S-2 are mainly Fe, Cu, Ni, Ag, etc. Most sulfides have a metallic luster, are moderately soft, and are noticeably heavy for their size. These minerals will not form in the presence of free oxygen. Under an oxygen-rich atmosphere, sulfide minerals tend to chemically weather to various oxide and hydroxide minerals.

Sphalerite is a somewhat common zinc sulfide mineral (ZnS). It has a metallic to submetallic to resinous to adamantine luster. Many metals can substitute for the zinc, such as iron, cadmium, and manganese. Sphalerite almost always has some iron in it, so a better chemical formula would be (Zn,Fe)S. Sphalerite has a wide color range, depending principally on iron content. Pure to almost pure sphalerite is whitish to greenish. With increasing iron content, sphalerite becomes yellowish to brownish to blackish. One variety of sphalerite has a strikingly intense dark red color (ruby sphalerite). It's streak color also varies with iron content from whitish to pale yellowish to brownish. Sphalerite is also distinctive in being moderately heavy for its size and having six different planes of cleavage.

Sphalerite is the most important zinc ore mineral. Zinc produced from sphalerite is used for many purposes, including mixing with copper to produce brass, rust protection of iron & steel, and for making modern American pennies (although the cost of making each zinc penny is >1¢).

The rock shown here is zinc ore consisting of sphalerite replacing dolostone (Bonneterre Dolomite, Upper Cambrian). It comes from a now-closed zinc mine in Missouri. Relict silty layers are still evident, despite the mineralization.

This specimen is from a Mississippi Valley-type deposit. Commonly abbreviated "MVT", Mississippi Valley-type deposits are named for a series of mineral deposits that occur in non-deformed platform sedimentary rocks along the Upper Mississippi River Valley, USA. Many specific minerals occur in MVT deposits, but are dominated by galena, sphalerite, barite, and fluorite. These minerals occur in caves and karst, paleokarst structures, in collapse fabrics, in pull-apart structures, etc. MVT deposits in America are mined as important, large sources of lead ore and zinc ore. The classic areas for MVT deposits are southern Illinois, the tristate area of Oklahoma-Missouri-Kansas, northern Kentucky, southwestern Wisconsin, and southeastern Missouri. The minerals are hydrothermal in origin and were precipitated from basinal brines that were flushed out to the edges of large sedimentary basins (e.g., the Illinois Basin and the Black Warrior Basin). In basin edge areas, the brines came into contact with Mississippian-aged carbonate rocks (limestone and dolostone), which caused mineralization. The brines were 15% to 25% salinity with temperatures of 50 to 200 degrees Celsius (commonly 100 to 150 degrees C). MVT mineralization usually occurs in limestone and dolostone but can also be hosted in shales, siltstones, sandstones, and conglomerates. Gangue minerals include pyrite, marcasite, calcite, aragonite, dolomite, siderite, and quartz. Up to 40 or 50 pulses of brine fluids are recorded in banding of mineral suites in MVT deposits (for example, sphalerite coatings in veins have a stratigraphy - each layer represents a pulse event). Each pulse of water was probably expelled rapidly - overpressurization and friction likely caused the water to heat up. Some bitumen (crystallized organic matter) can occur, which is an indication of the basinal origin of the brines. The presence of asphalt-bitumen indicates some hydrocarbon migration occurred. Some petroleum inclusions are found within fluorite crystals and petroleum scum occurs on fluorite crystals. MVT deposits are associated with oil fields and the temperature of mineral precipitation matches the petroleum window. The brines may simply have accompanied hydrocarbon fluids as they migrated updip.

The high temperatures of these basin periphery deposits wasn't necessarily influenced by igneous hydrothermal activity. Hot fluids can occur in basins that are deep enough for the geothermal gradient to be ~100 to 150 degrees Celsius. If a permeable conduit horizon is present in a succession of interbedded siliciclastic sedimentary rocks, migration of hot, deep basinal brines may be quick enough to get MVT deposit conditions at basin margins.

MVT deposits occur in the Upper Mississippi Valley of America as well as in northern Africa, Scandinavia, northwestern Canada, at scattered sites in Europe, and at some sites in the American Cordillera. Some of these occurrences are in deformed host rocks. MVT deposits have little to no precious metals - maybe a little copper (Cu). Mineralization is usually associated with limestone or dolostone in fracture fillings and vugs. Little host rock alteration has occurred - usually only dolomitization of limestones.

The age of the host rocks in the Mississippi Valley area varies - it ranges from Cambrian to Mississippian. Dating of mineralization has been difficult, but published ages indicate a near-latest Paleozoic to Mesozoic timing.

MVT deposits in the Upper Mississippi River area are often divided into three subtypes based on the dominant mineral: 1) lead-rich (galena dominated); 2) zinc-rich (sphalerite dominated); and 3) fluorite-rich.

Locality: Magmont Mine, New Lead Belt, south-southwest of the town of Bixby, northwestern Iron County, southeastern Missouri, USA


Photo gallery of sphalerite:

<a href="http://www.mindat.org/gallery.php?min=3727" rel="nofollow">www.mindat.org/gallery.php?min=3727</a>
Date
Source Sphalerite replacing dolostone (Bonneterre Dolomite, Upper Cambrian; Magmont Mine, New Lead Belt, Bixby, Missouri, USA) 1
Author James St. John

Licensing[edit]

w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 2.0 Generic license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
This image was originally posted to Flickr by James St. John at https://flickr.com/photos/47445767@N05/41397242171 (archive). It was reviewed on 6 December 2019 by FlickreviewR 2 and was confirmed to be licensed under the terms of the cc-by-2.0.

6 December 2019

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current02:51, 6 December 2019Thumbnail for version as of 02:51, 6 December 20192,544 × 2,601 (5.17 MB)Ser Amantio di Nicolao (talk | contribs)Transferred from Flickr via #flickr2commons

The following page uses this file:

Metadata